The Fundamental Counting Principle

These notes are intended as a summary of section 8.1 (p. 686 - 689) in your workbook. You should also read the section for more complete explanations and additional examples.

Example (not in workbook)

A hardware store has two styles of kitchen cabinets and three finishes that the cabinets come in. How many different finished kitchen cabinets are possible?

Example 1 (sidebar p. 687)

A fan has 3 settings: off, low, high. How many ways are there to set 3 fans?

These two examples illustrate the fundamental counting principle.

Fundamental Counting Principle

Suppose that an event A can occur in m ways and, after it has occurred, event B can occur in n ways. Then the number of ways that both A and B can occur is $m \times n$ ways.

So, for the first example (kitchen cabinets):

And for the second example (fan):

Note: This can be extended to include any number of consecutive events.

Example 2 (sidebar p. 688)

For an online banking account, the minimum security standards require a password to have 2 letters followed by 5 digits. All letters and digits may be used more than once. How many passwords are possible?

Example (not in workbook)

1. How many different 3 -digit numbers can be made using the digits $1,2,3,4,5,6$, 7 , without repetition.
2. How many of these are even?
3. How many are odd?
4. How many are greater than 300 ?

Example (not in workbook)

In how many different orders can someone play 4 CDs?

The expression $4 \times 3 \times 2 \times 1$ can be expressed as 4 ! (read as 4 factorial). This is known as factorial notation.

Factorial Notation

In general, n factorial is

$$
n!=n(n-1)(n-2) \ldots(3)(2)(1)
$$

Note:

1. Factorials are not defined for negative numbers.
2. $0!=1$
3. Factorial notation can be evaluated on your graphing calculator by pressing MATH then PRB then 4.

Example (not in workbook)

Evaluate:
a) $\frac{7!}{5!}$
b) $\frac{10!}{4!6!}$
c) $\frac{(n+2)!}{n!}$

Homework: \#1, 3-12, 16 in the section 8.1 exercises (p. $689-693$). Answers on p. 694. \#3 in the section 8.2 exercises (p. 701 -705). Answers on p. 706.

